Numsense Data Science For The Layman

Numsense  Data Science for the Layman PDF
Author: Annalyn Ng
Publisher: Annalyn Ng & Kenneth Soo
ISBN: 9789811110689
Size: 33.83 MB
Format: PDF, ePub
Category :
Languages : un
Pages :
View: 6630

Get Book

Used in Stanford's CS102 Big Data (Spring 2017) course. Want to get started on data science? Our promise: no math added. This book has been written in layman's terms as a gentle introduction to data science and its algorithms. Each algorithm has its own dedicated chapter that explains how it works, and shows an example of a real-world application. To help you grasp key concepts, we stick to intuitive explanations, as well as lots of visuals, all of which are colorblind-friendly. Popular concepts covered include: A/B Testing Anomaly Detection Association Rules Clustering Decision Trees and Random Forests Regression Analysis Social Network Analysis Neural Networks Features: Intuitive explanations and visuals Real-world applications to illustrate each algorithm Point summaries at the end of each chapter Reference sheets comparing the pros and cons of algorithms Glossary list of commonly-used terms With this book, we hope to give you a practical understanding of data science, so that you, too, can leverage its strengths in making better decisions.

Data Smart

Data Smart PDF
Author: John W. Foreman
Publisher: John Wiley & Sons
ISBN: 1118839862
Size: 46.76 MB
Format: PDF, ePub
Category : Business & Economics
Languages : en
Pages : 432
View: 2922

Get Book

Data Science gets thrown around in the press like it'smagic. Major retailers are predicting everything from when theircustomers are pregnant to when they want a new pair of ChuckTaylors. It's a brave new world where seemingly meaningless datacan be transformed into valuable insight to drive smart businessdecisions. But how does one exactly do data science? Do you have to hireone of these priests of the dark arts, the "data scientist," toextract this gold from your data? Nope. Data science is little more than using straight-forward steps toprocess raw data into actionable insight. And in DataSmart, author and data scientist John Foreman will show you howthat's done within the familiar environment of aspreadsheet. Why a spreadsheet? It's comfortable! You get to look at the dataevery step of the way, building confidence as you learn the tricksof the trade. Plus, spreadsheets are a vendor-neutral place tolearn data science without the hype. But don't let the Excel sheets fool you. This is a book forthose serious about learning the analytic techniques, the math andthe magic, behind big data. Each chapter will cover a different technique in aspreadsheet so you can follow along: Mathematical optimization, including non-linear programming andgenetic algorithms Clustering via k-means, spherical k-means, and graphmodularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, andbag-of-words models Forecasting, seasonal adjustments, and prediction intervalsthrough monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through eachtechnique. But never fear, the topics are readily applicable andthe author laces humor throughout. You'll even learnwhat a dead squirrel has to do with optimization modeling, whichyou no doubt are dying to know.

Principles Of Data Science

Principles of Data Science PDF
Author: Sinan Ozdemir
Publisher: Packt Publishing Ltd
ISBN: 1785888927
Size: 53.74 MB
Format: PDF, ePub, Mobi
Category : Computers
Languages : en
Pages : 388
View: 4467

Get Book

Learn the techniques and math you need to start making sense of your data About This Book Enhance your knowledge of coding with data science theory for practical insight into data science and analysis More than just a math class, learn how to perform real-world data science tasks with R and Python Create actionable insights and transform raw data into tangible value Who This Book Is For You should be fairly well acquainted with basic algebra and should feel comfortable reading snippets of R/Python as well as pseudo code. You should have the urge to learn and apply the techniques put forth in this book on either your own data sets or those provided to you. If you have the basic math skills but want to apply them in data science or you have good programming skills but lack math, then this book is for you. What You Will Learn Get to know the five most important steps of data science Use your data intelligently and learn how to handle it with care Bridge the gap between mathematics and programming Learn about probability, calculus, and how to use statistical models to control and clean your data and drive actionable results Build and evaluate baseline machine learning models Explore the most effective metrics to determine the success of your machine learning models Create data visualizations that communicate actionable insights Read and apply machine learning concepts to your problems and make actual predictions In Detail Need to turn your skills at programming into effective data science skills? Principles of Data Science is created to help you join the dots between mathematics, programming, and business analysis. With this book, you'll feel confident about asking—and answering—complex and sophisticated questions of your data to move from abstract and raw statistics to actionable ideas. With a unique approach that bridges the gap between mathematics and computer science, this books takes you through the entire data science pipeline. Beginning with cleaning and preparing data, and effective data mining strategies and techniques, you'll move on to build a comprehensive picture of how every piece of the data science puzzle fits together. Learn the fundamentals of computational mathematics and statistics, as well as some pseudocode being used today by data scientists and analysts. You'll get to grips with machine learning, discover the statistical models that help you take control and navigate even the densest datasets, and find out how to create powerful visualizations that communicate what your data means. Style and approach This is an easy-to-understand and accessible tutorial. It is a step-by-step guide with use cases, examples, and illustrations to get you well-versed with the concepts of data science. Along with explaining the fundamentals, the book will also introduce you to slightly advanced concepts later on and will help you implement these techniques in the real world.

Building Data Science Teams

Building Data Science Teams PDF
Author: DJ Patil
Publisher: "O'Reilly Media, Inc."
ISBN: 1449316778
Size: 55.15 MB
Format: PDF, Mobi
Category : Computers
Languages : en
Pages : 24
View: 185

Get Book

As data science evolves to become a business necessity, the importance of assembling a strong and innovative data teams grows. In this in-depth report, data scientist DJ Patil explains the skills, perspectives, tools and processes that position data science teams for success. Topics include: What it means to be "data driven." The unique roles of data scientists. The four essential qualities of data scientists. Patil's first-hand experience building the LinkedIn data science team.

Fundamentals Of Data Science

Fundamentals of Data Science PDF
Author: Samuel Burns
Publisher:
ISBN: 9781693798924
Size: 44.14 MB
Format: PDF, ePub, Mobi
Category : Big data
Languages : en
Pages : 134
View: 4842

Get Book

"This book is for students or anyone, with limited or no prior programming, statistics, and data analytics knowledge. This short guide is ideal for absolute beginners, or anyone who wants to acquire a basic working knowledge of data science. It is an excellent guide if you want to learn about the principals of data science from scratch, in just a few hours. The author discussed everything that you need to know about data science. First, you are guided to learn the meaning of data science. The history of data science has been discussed to help you know how people came to realize that data is a rich source of knowledge and intelligence. The theories underlying data science have been discussed. Examples include decision and estimation theories. The author discussed the various machine learning algorithms used in data science and the various steps one has to undergo when performing data science tasks, from data collection to data presentation and visualization. The author helps you to know the various ways through which you can apply data science in your business for increased profits. A simple language has been used to ensure ease of understanding, especially for beginners." --

Data Science Job How To Become A Data Scientist

Data Science Job  How to become a Data Scientist PDF
Author: Przemek Chojecki
Publisher: Przemek Chojecki
ISBN:
Size: 19.58 MB
Format: PDF, Kindle
Category : Computers
Languages : en
Pages : 100
View: 3501

Get Book

We’re living in a digital world. Most of our global economy is digital and the sheer volume of data is stupendous. It’s 2020 and we’re living in the future. Data Scientist is one of the hottest job on the market right now. Demand for data science is huge and will only grow, and it seems like it will grow much faster than the actual number of data scientists. So if you want to make a career change and become a data scientist, now is the time. This book will guide you through the process. From my experience of working with multiple companies as a project manager, a data science consultant or a CTO, I was able to see the process of hiring data scientists and building data science teams. I know what’s important to land your first job as a data scientist, what skills you should acquire, what you should show during a job interview.

The Data Science Handbook

The Data Science Handbook PDF
Author: Field Cady
Publisher: John Wiley & Sons
ISBN: 1119092949
Size: 56.60 MB
Format: PDF, ePub, Mobi
Category : Mathematics
Languages : en
Pages : 416
View: 324

Get Book

A comprehensive overview of data science covering the analytics, programming, and business skills necessary to master the discipline Finding a good data scientist has been likened to hunting for a unicorn: the required combination of technical skills is simply very hard to find in one person. In addition, good data science is not just rote application of trainable skill sets; it requires the ability to think flexibly about all these areas and understand the connections between them. This book provides a crash course in data science, combining all the necessary skills into a unified discipline. Unlike many analytics books, computer science and software engineering are given extensive coverage since they play such a central role in the daily work of a data scientist. The author also describes classic machine learning algorithms, from their mathematical foundations to real-world applications. Visualization tools are reviewed, and their central importance in data science is highlighted. Classical statistics is addressed to help readers think critically about the interpretation of data and its common pitfalls. The clear communication of technical results, which is perhaps the most undertrained of data science skills, is given its own chapter, and all topics are explained in the context of solving real-world data problems. The book also features: • Extensive sample code and tutorials using Python™ along with its technical libraries • Core technologies of “Big Data,” including their strengths and limitations and how they can be used to solve real-world problems • Coverage of the practical realities of the tools, keeping theory to a minimum; however, when theory is presented, it is done in an intuitive way to encourage critical thinking and creativity • A wide variety of case studies from industry • Practical advice on the realities of being a data scientist today, including the overall workflow, where time is spent, the types of datasets worked on, and the skill sets needed The Data Science Handbook is an ideal resource for data analysis methodology and big data software tools. The book is appropriate for people who want to practice data science, but lack the required skill sets. This includes software professionals who need to better understand analytics and statisticians who need to understand software. Modern data science is a unified discipline, and it is presented as such. This book is also an appropriate reference for researchers and entry-level graduate students who need to learn real-world analytics and expand their skill set. FIELD CADY is the data scientist at the Allen Institute for Artificial Intelligence, where he develops tools that use machine learning to mine scientific literature. He has also worked at Google and several Big Data startups. He has a BS in physics and math from Stanford University, and an MS in computer science from Carnegie Mellon.

Movie Analytics

Movie Analytics PDF
Author: Dominique Haughton
Publisher: Springer
ISBN: 3319094262
Size: 54.80 MB
Format: PDF, ePub
Category : Social Science
Languages : en
Pages : 64
View: 3108

Get Book

Movies will never be the same after you learn how to analyze movie data, including key data mining, text mining and social network analytics concepts. These techniques may then be used in endless other contexts. In the movie application, this topic opens a lively discussion on the current developments in big data from a data science perspective. This book is geared to applied researchers and practitioners and is meant to be practical. The reader will take a hands-on approach, running text mining and social network analyses with software packages covered in the book. These include R, SAS, Knime, Pajek and Gephi. The nitty-gritty of how to build datasets needed for the various analyses will be discussed as well. This includes how to extract suitable Twitter data and create a co-starring network from the IMDB database given memory constraints. The authors also guide the reader through an analysis of movie attendance data via a realistic dataset from France.

Data Analytics

Data Analytics PDF
Author: Robert Keane
Publisher: Createspace Independent Publishing Platform
ISBN: 9781977616555
Size: 70.93 MB
Format: PDF, ePub, Mobi
Category : Big data
Languages : en
Pages : 70
View: 6967

Get Book

Data Analytics Master The Techniques For Data Science, Big Data And Data Analytics If your business is like most, it is already generating a staggering amount of data on a regular basis. Understanding what this data truly means is key to succeeding in the marketplace these days and if you are looking for a way to give yourself an edge then Data Analytics is the book you have been waiting for. Inside you will find the tools you need in order to take full advantage of all of the data that your business is already generating regardless if you are part of a major corporation or if you are a small business that is just starting out. There are currently over a quintillion byte of data being created each and every day and if you aren't considering how you can make the most of your share then you are already losing out to the competition. Inside this book you will find: Everything you need to know to get started completing the right kind of data analysis to benefit your business regardless of what that business is. The best ways to utilize predictive analysis effectively. Easy to use machine learning and regression techniques. The reasons why you need discrete choice models in your life. And more... So, what are you waiting for? Don't get left behind, do your business a favor and buy this book today! Scroll Up And Click The "BUY" Button!

Getting Started With Data Science

Getting Started with Data Science PDF
Author: Murtaza Haider
Publisher: IBM Press
ISBN: 9780133991024
Size: 46.14 MB
Format: PDF, ePub, Docs
Category : Computers
Languages : en
Pages : 250
View: 6709

Get Book

Master Data Analytics Hands-On by Solving Fascinating Problems You'll Actually Enjoy! Harvard Business Review recently called data science "The Sexiest Job of the 21st Century." It's not just sexy: For millions of managers, analysts, and students who need to solve real business problems, it's indispensable. Unfortunately, there's been nothing easy about learning data science-until now. Getting Started with Data Science takes its inspiration from worldwide best-sellers like Freakonomics and Malcolm Gladwell's Outliers: It teaches through a powerful narrative packed with unforgettable stories. Murtaza Haider offers informative, jargon-free coverage of basic theory and technique, backed with plenty of vivid examples and hands-on practice opportunities. Everything's software and platform agnostic, so you can learn data science whether you work with R, Stata, SPSS, or SAS. Best of all, Haider teaches a crucial skillset most data science books ignore: how to tell powerful stories using graphics and tables. Every chapter is built around real research challenges, so you'll always know why you're doing what you're doing. You'll master data science by answering fascinating questions, such as: * Are religious individuals more or less likely to have extramarital affairs? * Do attractive professors get better teaching evaluations? * Does the higher price of cigarettes deter smoking? * What determines housing prices more: lot size or the number of bedrooms? * How do teenagers and older people differ in the way they use social media? * Who is more likely to use online dating services? * Why do some purchase iPhones and others Blackberry devices? * Does the presence of children influence a family's spending on alcohol? For each problem, you'll walk through defining your question and the answers you'll need; exploring how others have approached similar challenges; selecting your data and methods; generating your statistics; organizing your report; and telling your story. Throughout, the focus is squarely on what matters most: transforming data into insights that are clear, accurate, and can be acted upon.